Autres algorithmes à traduire
Labyrinthes : différents algorithmes
Autres algorithmes à traduire
J’ai traduit tous les autres, il me reste ceux-ci à finir. L’intégralité des algorithmes se trouve ici.
Binary tree Mazes : This is basically the simplest and fastest algorithm possible, however Mazes produced by it have a very biased texture. For each cell carve a passage either leading up or leading left, but not both. In the wall added version, for each vertex add a wall segment leading down or right, but not both. Each cell is independent of every other cell, where you don’t have to refer to the state of any other cells when creating it. Hence this is a true memoryless Maze generation algorithm, with no limit to the size of Maze you can create. This is basically a computer science binary tree, if you consider the upper left corner the root, where each node or cell has one unique parent which is the cell above or to the left of it. Binary tree Mazes are different than standard perfect Mazes, since about half the cell types can never exist in them. For example there will never be a crossroads, and all dead ends have passages pointing up or left, and never down or right. The Maze tends to have passages leading diagonally from upper left to lower right, where the Maze is much easier to navigate from lower right to upper left. You will always be able to travel up or left, but never both, so you can always deterministically travel diagonally up and to the left without hitting any barriers. Traveling down and to the right is when you’ll encounter choices and dead ends. Note if you flip a binary tree Maze upside down and treat passages as walls and vice versa, the result is basically another binary tree.